Not logged in
PANGAEA.
Data Publisher for Earth & Environmental Science

Steph, Silke; Regenberg, Marcus; Tiedemann, Ralf; Mulitza, Stefan; Nürnberg, Dirk (2009): Planktonic foraminiferal δ¹⁸O values and apparent calcification depths of core-top samples along an east-west transect across the tropical Atlantic/Caribbean [dataset publication series]. PANGAEA, https://doi.org/10.1594/PANGAEA.742421, Supplement to: Steph, S et al. (2009): Stable isotopes of planktonic foraminifera from tropical Atlantic/Caribbean core-tops: Implications for reconstructing upper ocean stratification. Marine Micropaleontology, 71(1-2), 1-19, https://doi.org/10.1016/j.marmicro.2008.12.004

Always quote citation above when using data! You can download the citation in several formats below.

RIS CitationBibTeX CitationShow MapGoogle Earth

Abstract:
D18O values of nine tropical-subtropical planktonic foraminiferal species with different preferential habitat depths collected from 62 core-top samples along an east-west transect across the tropical Atlantic/Caribbean were used to test the applicability of interspecific d18O gradients for reconstructions of tropical upper ocean stratification. In general, the d18O difference (Delta d18O) between intermediate- and shallow-dwelling species decreases, and Delta d18O between deep and intermediate dwellers increases with increasing thermocline depth towards the west. The statistical significance of regional differences in Delta d18O highlights Delta d18O between the intermediate dwellers (in particular Globorotalia scitula and Globorotalia tumida) and the shallow dweller Globigerinoides ruber pink, as well as Delta d18O between the deep dwellers Globorotalia crassaformis or Globorotalia truncatulinoides dextral and intermediate dwellers as most sensitive to changes in tropical Atlantic thermocline depth. Based on the observed regional variations in interspecific Delta d18O, we propose a multispecies stratification index "STRAtrop" = (d18Ointermediate - d18Oshallow) / (d18Odeep - d18Oshallow) for the tropical ocean. Statistically significant differences in STRAtrop values between the E-Atlantic and the Caribbean suggest that this index may be a useful tool to monitor variations in tropical upper ocean stratification in the geological record.
Coverage:
Median Latitude: 7.281064 * Median Longitude: -44.382248 * South-bound Latitude: -5.841660 * West-bound Longitude: -79.421667 * North-bound Latitude: 21.324333 * East-bound Longitude: -8.650000
Date/Time Start: 1989-02-25T00:00:00 * Date/Time End: 2002-06-16T11:50:00
Event(s):
GeoB1104-5 * Latitude: -1.163330 * Longitude: -10.705000 * Date/Time: 1989-02-25T00:00:00 * Elevation: -3724.0 m * Recovery: 0.43 m * Location: Equatorial Atlantic * Campaign: M9/4 * Basis: Meteor (1986) * Method/Device: Giant box corer (GKG) * Comment: Foraminiferenschlamm
GeoB1105-3 * Latitude: -1.665000 * Longitude: -12.428330 * Date/Time: 1989-02-25T00:00:00 * Elevation: -3231.0 m * Penetration: 0.36 m * Recovery: 0.32 m * Location: Equatorial Atlantic * Campaign: M9/4 * Basis: Meteor (1986) * Method/Device: Giant box corer (GKG) * Comment: Karbonatschlamm
GeoB1106-5 * Latitude: -1.760000 * Longitude: -12.551660 * Date/Time: 1989-02-26T00:00:00 * Elevation: -2471.0 m * Penetration: 0.37 m * Recovery: 0.33 m * Location: Equatorial Atlantic * Campaign: M9/4 * Basis: Meteor (1986) * Method/Device: Giant box corer (GKG) * Comment: Foram.-schlamm, sandig
Size:
10 datasets

Download Data

Download ZIP file containing all datasets as tab-delimited text — use the following character encoding:

Datasets listed in this publication series

  1. Steph, S; Regenberg, M; Tiedemann, R et al. (2009): (Appendix B) Planktonic foraminiferal δ¹⁸O values of core-top samples along an east-west transect across the tropical Atlantic/Caribbean. https://doi.org/10.1594/PANGAEA.742357
  2. Steph, S; Regenberg, M; Tiedemann, R et al. (2009): (Appendix C) Apparent calcification depths (ACDs) of Globorotalia crassaformis. https://doi.org/10.1594/PANGAEA.742361
  3. Steph, S; Regenberg, M; Tiedemann, R et al. (2010): (Appendix C) Apparent calcification depths (ACDs) of Globorotalia menardii. https://doi.org/10.1594/PANGAEA.742416
  4. Steph, S; Regenberg, M; Tiedemann, R et al. (2009): (Appendix C) Apparent calcification depths (ACDs) of Globigerinoides ruber pink. https://doi.org/10.1594/PANGAEA.742418
  5. Steph, S; Regenberg, M; Tiedemann, R et al. (2009): (Appendix C) Apparent calcification depths (ACDs) of Globigerinoides ruber white. https://doi.org/10.1594/PANGAEA.742420
  6. Steph, S; Regenberg, M; Tiedemann, R et al. (2010): (Appendix C) Apparent calcification depths (ACDs) of Globigerinoides sacculifer. https://doi.org/10.1594/PANGAEA.742415
  7. Steph, S; Regenberg, M; Tiedemann, R et al. (2009): (Appendix C) Apparent calcification depths (ACDs) of Globorotalia scitula. https://doi.org/10.1594/PANGAEA.742362
  8. Steph, S; Regenberg, M; Tiedemann, R et al. (2009): (Appendix C) Apparent calcification depths (ACDs) of Globorotalia truncatulinoides. https://doi.org/10.1594/PANGAEA.742364
  9. Steph, S; Regenberg, M; Tiedemann, R et al. (2009): (Appendix C) Apparent calcification depths (ACDs) of Globorotalia tumida. https://doi.org/10.1594/PANGAEA.742414
  10. Steph, S; Regenberg, M; Tiedemann, R et al. (2009): (Appendix C) Apparent calcification depths (ACDs) of Neogloboquadrina dutertrei. https://doi.org/10.1594/PANGAEA.742365