Not logged in
PANGAEA.
Data Publisher for Earth & Environmental Science

Stumpp, Meike; Trübenbach, Katja; Brennecke, Dennis; Hu, Marian Y; Melzner, Frank (2012): Seawater carbonate chemistry and resource allocation and extracellular acid-base status in the sea urchin Strongylocentrotus droebachiensis during experiments, 2012. PANGAEA, https://doi.org/10.1594/PANGAEA.779697, Supplement to: Stumpp, M et al. (2012): Resource allocation and extracellular acid-base status in the sea urchin Strongylocentrotus droebachiensis in response to CO2 induced seawater acidification. Aquatic Toxicology, 110-111, 194-207, https://doi.org/10.1016/j.aquatox.2011.12.020

Always quote citation above when using data! You can download the citation in several formats below.

RIS CitationBibTeX Citation

Abstract:
Anthropogenic CO2 emission will lead to an increase in seawater pCO2 of up to 80-100 Pa (800-1000 µatm) within this century and to an acidification of the oceans. Green sea urchins (Strongylocentrotus droebachiensis) occurring in Kattegat experience seasonal hypercapnic and hypoxic conditions already today. Thus, anthropogenic CO2 emissions will add up to existing values and will lead to even higher pCO2 values >200 Pa (>2000 µatm). To estimate the green sea urchins' potential to acclimate to acidified seawater, we calculated an energy budget and determined the extracellular acid base status of adult S. droebachiensis exposed to moderately (102 to 145 Pa, 1007 to 1431 µatm) and highly (284 to 385 Pa, 2800 to 3800 µatm) elevated seawater pCO2 for 10 and 45 days.
A 45 - day exposure to elevated pCO2 resulted in a shift in energy budgets, leading to reduced somatic and reproductive growth. Metabolic rates were not significantly affected, but ammonium excretion increased in response to elevated pCO2. This led to decreased O:N ratios. These findings suggest that protein metabolism is possibly enhanced under elevated pCO2 in order to support ion homeostasis by increasing net acid extrusion. The perivisceral coelomic fluid acid-base status revealed that S. droebachiensis is able to fully (intermediate pCO2) or partially (high pCO2) compensate extracellular pH (pHe) changes by accumulation of bicarbonate (maximum increases 2.5 mM), albeit at a slower rate than typically observed in other taxa (10 day duration for full pHe compensation). At intermediate pCO2, sea urchins were able to maintain fully compensated pHe for 45 days. Sea urchins from the higher pCO2 treatment could be divided into two groups following medium-term acclimation: one group of experimental animals (29%) contained remnants of food in their digestive system and maintained partially compensated pHe (+2.3 mM HCO3), while the other group (71%) exhibited an empty digestive system and a severe metabolic acidosis (-0.5 pH units, -2.4 mM HCO3). There was no difference in mortality between the three pCO2 treatments.
The results of this study suggest that S. droebachiensis occurring in the Kattegat might be pre-adapted to hypercapnia due to natural variability in pCO2 in its habitat. We show for the first time that some echinoderm species can actively compensate extracellular pH. Seawater pCO2 values of >200 Pa, which will occur in the Kattegat within this century during seasonal hypoxic events, can possibly only be endured for a short time period of a few weeks. Increases in anthropogenic CO2 emissions and leakages from potential sub-seabed CO2 storage (CCS) sites thus impose a threat to the ecologically and economically important species S. droebachiensis.
Keyword(s):
Animalia; Behaviour; Benthic animals; Benthos; Bottles or small containers/Aquaria (<20 L); Coast and continental shelf; Echinodermata; Growth/Morphology; Laboratory experiment; North Atlantic; Red Sea; Reproduction; Single species; Strongylocentrotus droebachiensis; Temperate
Funding:
Seventh Framework Programme (FP7), grant/award no. 211384: European Project on Ocean Acidification
Seventh Framework Programme (FP7), grant/award no. 265847: Sub-seabed CO2 Storage: Impact on Marine Ecosystems
Sixth Framework Programme (FP6), grant/award no. 511106: European network of excellence for Ocean Ecosystems Analysis
Comment:
In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Lavigne and Gattuso, 2011) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI).
Parameter(s):
#NameShort NameUnitPrincipal InvestigatorMethod/DeviceComment
1Time, incubationT incubationdayStumpp, Meike
2Experimental treatmentExp treatStumpp, Meike
3Flow rateFlow ratel/minStumpp, Meike
4Flow rate, standard deviationFlow rate std dev±Stumpp, Meike
5ReplicatesRepl#Stumpp, MeikeT
6Temperature, waterTemp°CStumpp, Meike
7Temperature, standard deviationT std dev±Stumpp, Meike
8ReplicatesRepl#Stumpp, MeikeS
9SalinitySalStumpp, Meike
10Salinity, standard deviationSal std dev±Stumpp, Meike
11ReplicatesRepl#Stumpp, MeikepH NBS
12pHpHStumpp, MeikeCalculated using CO2SYSNBS scale
13pH, standard deviationpH std dev±Stumpp, MeikeNBS scale
14ReplicatesRepl#Stumpp, MeikepH Total
15pHpHStumpp, MeikepH meter (Metrohm, 826 pH mobile)Total scale
16pH, standard deviationpH std dev±Stumpp, MeikeTotal scale
17ReplicatesRepl#Stumpp, MeikeTA
18Alkalinity, totalATµmol/kgStumpp, MeikePotentiometric titration, VINDTA (marianda)
19Alkalinity, total, standard deviationAT std dev±Stumpp, Meike
20ReplicatesRepl#Stumpp, MeikeTC
21Carbon, inorganic, dissolvedDICµmol/kgStumpp, Meikesee reference(s)
22Carbon, inorganic, dissolved, standard deviationDIC std dev±Stumpp, Meike
23ReplicatesRepl#Stumpp, MeikepCO2
24Partial pressure of carbon dioxide (water) at sea surface temperature (wet air)pCO2water_SST_wetµatmStumpp, MeikeCalculated using CO2SYS
25Carbon dioxide, partial pressure, standard deviationpCO2 std dev±Stumpp, Meike
26ReplicatesRepl#Stumpp, MeikeCalcite
27Calcite saturation stateOmega CalStumpp, MeikeCalculated using CO2SYS
28Calcite saturation state, standard deviationOmega Cal std dev±Stumpp, Meike
29ReplicatesRepl#Stumpp, MeikeAragonite
30Aragonite saturation stateOmega ArgStumpp, MeikeCalculated using CO2SYS
31Aragonite saturation state, standard deviationOmega Arg std dev±Stumpp, Meike
32ReplicatesRepl#Stumpp, MeikeSample
33Strongylocentrotus droebachiensisS. droebachiensis%Stumpp, Meikeinfections
34Strongylocentrotus droebachiensisS. droebachiensis%Stumpp, Meikestressed
35Strongylocentrotus droebachiensisS. droebachiensis%Stumpp, Meikehealthy
36Strongylocentrotus droebachiensis, feeding stateS. droebachiensis feeding state%Stumpp, MeikeMicroscopyfull digestive system
37Strongylocentrotus droebachiensis, feeding stateS. droebachiensis feeding state%Stumpp, MeikeMicroscopyfull hind gut
38Strongylocentrotus droebachiensis, feeding stateS. droebachiensis feeding state%Stumpp, MeikeMicroscopyempty digestive system
39Gonad stage, developingGon stg dev%Stumpp, MeikeObservedfull
40Gonad stage, developingGon stg dev%Stumpp, MeikeObservedmedium
41Gonad stage, developingGon stg dev%Stumpp, MeikeObservedno gonads
42Strongylocentrotus droebachiensis, coelomic fluid colorS. droebachiensis coelomic fluid%Stumpp, MeikeObservedred
43Strongylocentrotus droebachiensis, coelomic fluid colorS. droebachiensis coelomic fluid%Stumpp, MeikeObservedlight red
44Strongylocentrotus droebachiensis, coelomic fluid colorS. droebachiensis coelomic fluid%Stumpp, MeikeObservedcolorless
45Positioning type/detailsPos typeStumpp, MeikeObservedtank water surface
46Positioning type/detailsPos typeStumpp, MeikeObservedtank bottom
47Positioning type/detailsPos typeStumpp, MeikeObservedtank bottom between algae
48Strongylocentrotus droebachiensis, diameterS. droebachiensis diammmStumpp, MeikeMeasuredstart
49Strongylocentrotus droebachiensis, diameter, standard deviationS. droebachiensis diam std dev±Stumpp, Meikestart
50Strongylocentrotus droebachiensis, diameterS. droebachiensis diammmStumpp, MeikeMeasuredend
51Strongylocentrotus droebachiensis, diameter, standard deviationS. droebachiensis diam std dev±Stumpp, Meikeend
52Strongylocentrotus droebachiensis, weightS. droebachiensis WgStumpp, MeikePrecision scale (LC220s, Sartorius, Göttingen, Germany, 1 mg resolution)wet mass
53Strongylocentrotus droebachiensis, weight, standard deviationS. droebachiensis W std dev±Stumpp, Meikewet mass
54Strongylocentrotus droebachiensis, test, weightS. droebachiensis test WgStumpp, MeikePrecision scale (LC220s, Sartorius, Göttingen, Germany, 1 mg resolution)wet mass
55Strongylocentrotus droebachiensis, test, weight, standard deviationS. droebachiensis test W std dev±Stumpp, Meikewet mass
56Strongylocentrotus droebachiensis, lantern of Aristotle, weightS. droebachiensis LA WmgStumpp, MeikePrecision scale (LC220s, Sartorius, Göttingen, Germany, 1 mg resolution)wet mass
57Strongylocentrotus droebachiensis, lantern of Aristotle, weight, standard deviationS. droebachiensis LA W std dev±Stumpp, Meikewet mass
58Strongylocentrotus droebachiensis, gonad, weightS. droebachiensis gonad WmgStumpp, MeikePrecision scale (LC220s, Sartorius, Göttingen, Germany, 1 mg resolution)wet mass
59Strongylocentrotus droebachiensis, gonad, weight, standard deviationS. droebachiensis gonad W std dev±Stumpp, Meikewet mass
60Strongylocentrotus droebachiensis, gut, weightS. droebachiensis gut WmgStumpp, MeikePrecision scale (LC220s, Sartorius, Göttingen, Germany, 1 mg resolution)wet mass
61Strongylocentrotus droebachiensis, gut, weight, standard deviationS. droebachiensis gut W std dev±Stumpp, Meikewet mass
62Strongylocentrotus droebachiensis, weightS. droebachiensis WgStumpp, MeikePrecision scale (LC220s, Sartorius, Göttingen, Germany, 1 mg resolution)dry mass
63Strongylocentrotus droebachiensis, weight, standard deviationS. droebachiensis W std dev±Stumpp, Meikedry mass
64Strongylocentrotus droebachiensis, test, weightS. droebachiensis test WgStumpp, MeikePrecision scale (LC220s, Sartorius, Göttingen, Germany, 1 mg resolution)dry mass
65Strongylocentrotus droebachiensis, test, weight, standard deviationS. droebachiensis test W std dev±Stumpp, Meikedry mass
66Strongylocentrotus droebachiensis, lantern of Aristotle, weightS. droebachiensis LA WmgStumpp, MeikePrecision scale (LC220s, Sartorius, Göttingen, Germany, 1 mg resolution)dry mass
67Strongylocentrotus droebachiensis, lantern of Aristotle, weight, standard deviationS. droebachiensis LA W std dev±Stumpp, Meikedry mass
68Strongylocentrotus droebachiensis, gonad, weightS. droebachiensis gonad WmgStumpp, MeikePrecision scale (LC220s, Sartorius, Göttingen, Germany, 1 mg resolution)dry mass
69Strongylocentrotus droebachiensis, gonad, weight, standard deviationS. droebachiensis gonad W std dev±Stumpp, Meikedry mass
70Strongylocentrotus droebachiensis, gut, weightS. droebachiensis gut WmgStumpp, MeikePrecision scale (LC220s, Sartorius, Göttingen, Germany, 1 mg resolution)dry mass
71Strongylocentrotus droebachiensis, gut, weight, standard deviationS. droebachiensis gut W std dev±Stumpp, Meikedry mass
72Strongylocentrotus droebachiensis, weightS. droebachiensis WgStumpp, MeikeCalculated, see reference(s)ash-free dry mass
73Strongylocentrotus droebachiensis, weight, standard deviationS. droebachiensis W std dev±Stumpp, Meikeash-free dry mass
74Strongylocentrotus droebachiensis, test, weightS. droebachiensis test WgStumpp, MeikeCalculated, see reference(s)ash-free dry mass
75Strongylocentrotus droebachiensis, test, weight, standard deviationS. droebachiensis test W std dev±Stumpp, Meikeash-free dry mass
76Strongylocentrotus droebachiensis, lantern of Aristotle, weightS. droebachiensis LA WmgStumpp, MeikeCalculated, see reference(s)ash-free dry mass
77Strongylocentrotus droebachiensis, lantern of Aristotle, weight, standard deviationS. droebachiensis LA W std dev±Stumpp, Meikeash-free dry mass
78Strongylocentrotus droebachiensis, gonad, weightS. droebachiensis gonad WmgStumpp, MeikeCalculated, see reference(s)ash-free dry mass
79Strongylocentrotus droebachiensis, gonad, weight, standard deviationS. droebachiensis gonad W std dev±Stumpp, Meikeash-free dry mass
80Strongylocentrotus droebachiensis, gut, weightS. droebachiensis gut WmgStumpp, MeikeCalculated, see reference(s)ash-free dry mass
81Strongylocentrotus droebachiensis, gut, weight, standard deviationS. droebachiensis gut W std dev±Stumpp, Meikeash-free dry mass
82Strongylocentrotus droebachiensis, weightS. droebachiensis WgStumpp, MeikePrecision scale (LC220s, Sartorius, Göttingen, Germany, 1 mg resolution)ash dry mass
83Strongylocentrotus droebachiensis, weight, standard deviationS. droebachiensis W std dev±Stumpp, Meikeash dry mass
84Strongylocentrotus droebachiensis, test, weightS. droebachiensis test WgStumpp, MeikePrecision scale (LC220s, Sartorius, Göttingen, Germany, 1 mg resolution)ash dry mass
85Strongylocentrotus droebachiensis, test, weight, standard deviationS. droebachiensis test W std dev±Stumpp, Meikeash dry mass
86Strongylocentrotus droebachiensis, lantern of Aristotle, weightS. droebachiensis LA WmgStumpp, MeikePrecision scale (LC220s, Sartorius, Göttingen, Germany, 1 mg resolution)ash dry mass
87Strongylocentrotus droebachiensis, lantern of Aristotle, weight, standard deviationS. droebachiensis LA W std dev±Stumpp, Meikeash dry mass
88Strongylocentrotus droebachiensis, gonad, weightS. droebachiensis gonad WmgStumpp, MeikePrecision scale (LC220s, Sartorius, Göttingen, Germany, 1 mg resolution)ash dry mass
89Strongylocentrotus droebachiensis, gonad, weight, standard deviationS. droebachiensis gonad W std dev±Stumpp, Meikeash dry mass
90Strongylocentrotus droebachiensis, gut, weightS. droebachiensis gut WmgStumpp, MeikePrecision scale (LC220s, Sartorius, Göttingen, Germany, 1 mg resolution)ash dry mass
91Strongylocentrotus droebachiensis, gut, weight, standard deviationS. droebachiensis gut W std dev±Stumpp, Meikeash dry mass
92Carbonate system computation flagCSC flagNisumaa, Anne-MarinCalculated using seacarb after Nisumaa et al. (2010)
93pHpHNisumaa, Anne-MarinCalculated using seacarb after Nisumaa et al. (2010)Total scale
94Carbon dioxideCO2µmol/kgNisumaa, Anne-MarinCalculated using seacarb after Nisumaa et al. (2010)
95Partial pressure of carbon dioxide (water) at sea surface temperature (wet air)pCO2water_SST_wetµatmNisumaa, Anne-MarinCalculated using seacarb after Nisumaa et al. (2010)
96Fugacity of carbon dioxide (water) at sea surface temperature (wet air)fCO2water_SST_wetµatmNisumaa, Anne-MarinCalculated using seacarb after Nisumaa et al. (2010)
97Bicarbonate ion[HCO3]-µmol/kgNisumaa, Anne-MarinCalculated using seacarb after Nisumaa et al. (2010)
98Carbonate ion[CO3]2-µmol/kgNisumaa, Anne-MarinCalculated using seacarb after Nisumaa et al. (2010)
99Alkalinity, totalATµmol/kgNisumaa, Anne-MarinCalculated using seacarb after Nisumaa et al. (2010)
100Aragonite saturation stateOmega ArgNisumaa, Anne-MarinCalculated using seacarb after Nisumaa et al. (2010)
101Calcite saturation stateOmega CalNisumaa, Anne-MarinCalculated using seacarb after Nisumaa et al. (2010)
Status:
Curation Level: Enhanced curation (CurationLevelC)
Size:
489 data points

Download Data

Download dataset as tab-delimited text — use the following character encoding:

View dataset as HTML