Not logged in
PANGAEA.
Data Publisher for Earth & Environmental Science

Olischläger, Mark; Iñiguez, Concepcion; Koch, Kristina; Wiencke, Christian; Lopez Gordillo, Francisco Javier (2023): Seawater carbonate chemistry and growth and photosynthetic performance of temperate and Arctic populations of Saccharina latissima [dataset]. PANGAEA, https://doi.org/10.1594/PANGAEA.958138

Always quote citation above when using data! You can download the citation in several formats below.

RIS CitationBibTeX Citation

Abstract:
The Arctic population of the kelp Saccharina latissima differs from the Helgoland population in its sensitivity to changing temperature and CO2 levels. The Arctic population does more likely benefit from the upcoming environmental scenario than its Atlantic counterpart. The previous research demonstrated that warming and ocean acidification (OA) affect the biochemical composition of Arctic (Spitsbergen; SP) and cold-temperate (Helgoland; HL) Saccharina latissima differently, suggesting ecotypic differentiation. This study analyses the responses to different partial pressures of CO2 (380, 800, and 1500 µatm pCO2) and temperature levels (SP population: 4, 10 °C; HL population: 10, 17 °C) on the photophysiology (O2 production, pigment composition, D1-protein content) and carbon assimilation [Rubisco content, carbon concentrating mechanisms (CCMs), growth rate] of both ecotypes. Elevated temperatures stimulated O2 production in both populations, and also led to an increase in pigment content and a deactivation of CCMs, as indicated by 13C isotopic discrimination of algal biomass (εp) in the HL population, which was not observed in SP thalli. In general, pCO2 effects were less pronounced than temperature effects. High pCO2 deactivated CCMs in both populations and produced a decrease in the Rubisco content of HL thalli, while it was unaltered in SP population. As a result, the growth rate of the Arctic ecotype increased at elevated pCO2 and higher temperatures and it remained unchanged in the HL population. Ecotypic differentiation was revealed by a significantly higher O2 production rate and an increase in Chl a, Rubisco, and D1 protein content in SP thalli, but a lower growth rate, in comparison to the HL population. We conclude that both populations differ in their sensitivity to changing temperatures and OA and that the Arctic population is more likely to benefit from the upcoming environmental scenario than its Atlantic counterpart.
Keyword(s):
Arctic; Benthos; Bottles or small containers/Aquaria (<20 L); Chromista; Coast and continental shelf; Growth/Morphology; Laboratory experiment; Macroalgae; North Atlantic; Ochrophyta; Other studied parameter or process; Polar; Primary production/Photosynthesis; Saccharina latissima; Single species; Temperate; Temperature
Supplement to:
Olischläger, Mark; Iñiguez, Concepcion; Koch, Kristina; Wiencke, Christian; Lopez Gordillo, Francisco Javier (2017): Increased pCO2 and temperature reveal ecotypic differences in growth and photosynthetic performance of temperate and Arctic populations of Saccharina latissima. Planta, 245(1), 119-136, https://doi.org/10.1007/s00425-016-2594-3
Documentation:
Gattuso, Jean-Pierre; Epitalon, Jean-Marie; Lavigne, Héloïse; Orr, James; Gentili, Bernard; Hagens, Mathilde; Hofmann, Andreas; Mueller, Jens-Daniel; Proye, Aurélien; Rae, James; Soetaert, Karline (2022): seacarb: seawater carbonate chemistry with R. R package version 3.3.1. https://cran.r-project.org/web/packages/seacarb/index.html
Comment:
In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2022) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2023-04-26.
Parameter(s):
#NameShort NameUnitPrincipal InvestigatorMethod/DeviceComment
1Type of studyStudy typeOlischläger, Mark
2SpeciesSpeciesOlischläger, Mark
3Treatment: partial pressure of carbon dioxideT:pCO2µatmOlischläger, Mark
4SiteSiteOlischläger, Mark
5Treatment: temperatureT:temp°COlischläger, Mark
6Chlorophyll cChl cµg/gOlischläger, Mark
7Chlorophyll c, standard deviationChl c std dev±Olischläger, Mark
8Chlorophyll a per unit dry massChl a/dmµg/gOlischläger, Mark
9Chlorophyll a, standard deviationChl a std dev±Olischläger, Mark
10Effective quantum yieldYOlischläger, Mark
11Effective quantum yield, standard deviationY std dev±Olischläger, Mark
12D1 protein, relative intensityD1 prot rel intOlischläger, Mark
13D1 protein, relative intensity, standard deviationD1 prot rel int std dev±Olischläger, Mark
14Proteins, totalTPRTµg/gOlischläger, Markper dry mass
15Proteins, total, standard deviationTPRT std dev±Olischläger, Mark
16Rubisco, per dry massRubisco/DMmg/gOlischläger, Mark
17Rubisco content per dry mass, standard deviationRubisco/DM std dev±Olischläger, Mark
18Rubisco, per proteinRubisco/promg/gOlischläger, Mark
19Rubisco content per protein, standard deviationRubisco/pro std dev±Olischläger, Mark
20FucoxanthinFucoxanthinmg/gOlischläger, Markper dry mass
21Fucoxanthin, standard deviationFuco std dev±Olischläger, Mark
22ViolaxanthinViolaxanthinmg/gOlischläger, Markper dry mass
23Violaxanthin, standard deviationViola std±Olischläger, Mark
24AntheraxanthinAntheraµg/gOlischläger, Markper dry mass
25Antheraxanthin, standard deviationAnthera std dev±Olischläger, Mark
26ZeaxanthinZeaµg/gOlischläger, Markper dry mass
27Zeaxanthin, standard deviationZea std±Olischläger, Mark
28beta-Caroteneb-Carµg/gOlischläger, Markper dry mass
29beta-Carotene, standard deviationb-Car std dev±Olischläger, Mark
30De-epoxidation stateDESOlischläger, Mark
31De-epoxidation state, standard deviationDES std dev±Olischläger, Mark
32Violaxanthin-xanthophyll-cycle pigmentsVAZµg/mgOlischläger, Mark
33Violaxanthin-xanthophyll-cycle pigments, standard deviationVAZ std dev±Olischläger, Mark
34Pigments, accessoryPigm accµg/gOlischläger, Mark
35Pigments, accessory, standard deviationPigm acc std dev±Olischläger, Mark
36Chlorophyll c2/chlorophyll a ratioChl c2/Chl aOlischläger, Mark
37Chlorophyll c2/chlorophyll a ratio, standard deviationChl C2/chl a±Olischläger, Mark
38Fucoxanthin/chlorophyll a ratioFuco/Chl aOlischläger, Mark
39Fucoxanthin/chlorophyll a ratio, standard devitationFuco/Chl a std dev±Olischläger, Mark
40Isotopic fractionation, during photosynthisεpOlischläger, Mark
41Isotopic fractionation, during photosynthis, standard deviationεp std e±Olischläger, Mark
42Pigments, accessory/chlorophyll a ratioPigm acc/chl aOlischläger, Mark
43Pigments, accessory/chlorophyll a ratio, standard deviationPigm acc/chl a std dev±Olischläger, Mark
44Antheraxanthin/chlorophyll a ratioAnthera/chl aOlischläger, Mark
45Antheraxanthin/chlorophyll a ratio, standard deviationAnthera/chl a std dev±Olischläger, Mark
46Zeaxanthin/chlorophyll a ratioZea/chl aOlischläger, Mark
47Zeaxanthin/chlorophyll a ratio, standard deviationZea/chl a std dev±Olischläger, Mark
48Violaxanthin/chlorophyll a ratioViola/chl aOlischläger, Mark
49Violaxanthin/chlorophyll a ratio, standard deviationViola/Chl a std dev±Olischläger, Mark
50Pigments, violaxanthin-xanthophyll-cycle/chlorophyll a ratioVAZ/Chl aOlischläger, Mark
51Pigments, violaxanthin-xanthophyll-cycle/chlorophyll a ratio, standard deviationVAZ/chl a std dev±Olischläger, Mark
52Net photosynthesis ratePNµmol/mg/hOlischläger, Markper Rubisco
53Net photosynthesis rate, standard deviationPN std dev±Olischläger, Markper Rubisco
54Net photosynthesis rate, oxygenPN O2µmol/g/hOlischläger, Markper dry mass
55Net photosynthesis rate, standard deviationPN std dev±Olischläger, Markper dry mass
56Net photosynthesis rate, oxygen, per chlorophyll aPN O2µmol/mg/hOlischläger, Markper Chl a
57Net photosynthesis rate, standard deviationPN std dev±Olischläger, Markper Chl a
58Growth rateµ%/dayOlischläger, Mark
59Growth, relative, standard deviationGrowth rel std dev±Olischläger, Mark
60PhlorotanninsPhloromg/gOlischläger, Mark
61Phlorotannins, standard deviationPhloro std dev±Olischläger, Mark
62Beta-Carotene/chlorophyll a ratiob-Car/chl aOlischläger, Mark
63Beta-Carotene/chlorophyll a ratio, standard deviationb-Car/chl a std dev±Olischläger, Mark
64SalinitySalOlischläger, Mark
65Salinity, standard deviationSal std dev±Olischläger, Mark
66pHpHOlischläger, MarkPotentiometrictotal scale
67pH, standard deviationpH std dev±Olischläger, MarkPotentiometrictotal scale
68Alkalinity, totalATµmol/kgOlischläger, MarkPotentiometric titration
69Alkalinity, total, standard deviationAT std dev±Olischläger, MarkPotentiometric titration
70Temperature, waterTemp°COlischläger, Mark
71Temperature, water, standard deviationTemp std dev±Olischläger, Mark
72Partial pressure of carbon dioxide (water) at sea surface temperature (wet air)pCO2water_SST_wetµatmOlischläger, MarkCalculated using CO2SYS
73Partial pressure of carbon dioxide, standard deviationpCO2 std dev±Olischläger, MarkCalculated using CO2SYS
74Bicarbonate ion[HCO3]-µmol/kgOlischläger, MarkCalculated using CO2SYS
75Bicarbonate ion, standard deviation[HCO3]- std dev±Olischläger, MarkCalculated using CO2SYS
76Carbonate ion[CO3]2-µmol/kgOlischläger, MarkCalculated using CO2SYS
77Carbonate ion, standard deviation[CO3]2- std dev±Olischläger, MarkCalculated using CO2SYS
78Carbon, inorganic, dissolvedDICµmol/kgOlischläger, MarkCalculated using CO2SYS
79Carbon, inorganic, dissolved, standard deviationDIC std dev±Olischläger, MarkCalculated using CO2SYS
80Carbonate system computation flagCSC flagYang, YanCalculated using seacarb after Nisumaa et al. (2010)
81Carbon dioxideCO2µmol/kgYang, YanCalculated using seacarb after Nisumaa et al. (2010)
82Carbon dioxide, standard deviationCO2 std dev±Yang, YanCalculated using seacarb after Orr et al. (2018)
83Fugacity of carbon dioxide (water) at sea surface temperature (wet air)fCO2water_SST_wetµatmYang, YanCalculated using seacarb after Nisumaa et al. (2010)
84Fugacity of carbon dioxide in seawater, standard deviationfCO2 std dev±Yang, YanCalculated using seacarb after Orr et al. (2018)
85Partial pressure of carbon dioxide (water) at sea surface temperature (wet air)pCO2water_SST_wetµatmYang, YanCalculated using seacarb after Nisumaa et al. (2010)
86Partial pressure of carbon dioxide, standard deviationpCO2 std dev±Yang, YanCalculated using seacarb after Orr et al. (2018)
87Bicarbonate ion[HCO3]-µmol/kgYang, YanCalculated using seacarb after Nisumaa et al. (2010)
88Bicarbonate ion, standard deviation[HCO3]- std dev±Yang, YanCalculated using seacarb after Orr et al. (2018)
89Carbonate ion[CO3]2-µmol/kgYang, YanCalculated using seacarb after Nisumaa et al. (2010)
90Carbonate ion, standard deviation[CO3]2- std dev±Yang, YanCalculated using seacarb after Orr et al. (2018)
91Carbon, inorganic, dissolvedDICµmol/kgYang, YanCalculated using seacarb after Nisumaa et al. (2010)
92Carbon, inorganic, dissolved, standard deviationDIC std dev±Yang, YanCalculated using seacarb after Orr et al. (2018)
93Aragonite saturation stateOmega ArgYang, YanCalculated using seacarb after Nisumaa et al. (2010)
94Aragonite saturation state, standard deviationOmega Arg std dev±Yang, YanCalculated using seacarb after Orr et al. (2018)
95Calcite saturation stateOmega CalYang, YanCalculated using seacarb after Nisumaa et al. (2010)
96Calcite saturation state, standard deviationOmega Cal std dev±Yang, YanCalculated using seacarb after Orr et al. (2018)
Status:
Curation Level: Enhanced curation (CurationLevelC)
Size:
1152 data points

Download Data

Download dataset as tab-delimited text — use the following character encoding:

View dataset as HTML