Not logged in
PANGAEA.
Data Publisher for Earth & Environmental Science

Gurenko, Andrey A; Hoernle, Kaj; Sobolev, Alexander V; Hauff, Folkmar; Schmincke, Hans-Ulrich (2010): Geochemistry and radiogenic isotopes of ODP Hole 157-953C lavas [dataset publication series]. PANGAEA, https://doi.org/10.1594/PANGAEA.772733, Supplement to: Gurenko, AA et al. (2010): Source components of the Gran Canaria (Canary Islands) shield stage magmas: evidence from olivine composition and Sr–Nd–Pb isotopes. Contributions to Mineralogy and Petrology, 159(5), 689-702, https://doi.org/10.1007/s00410-009-0448-8

Always quote citation above when using data! You can download the citation in several formats below.

RIS CitationBibTeX CitationShow MapGoogle Earth

Abstract:
The Canary Island primitive basaltic magmas are thought to be derived from an HIMU-type upwelling mantle containing isotopically depleted (NMORB)-type component having interacted with an enriched (EM)-type component, the origin of which is still a subject of debate. We studied the relationships between Ni, Mn and Ca concentrations in olivine phenocrysts (85.6-90.0 mol.% Fo, 1,722-3,915 ppm Ni, 1,085-1,552 ppm Mn, 1,222-3,002 ppm Ca) from the most primitive subaerial and ODP Leg 157 high-silica (picritic to olivine basaltic) lavas with their bulk rock Sr-Nd-Pb isotope compositions (87Sr/86Sr = 0.70315-0.70331, 143Nd/144Nd = 0.51288-0.51292, 206Pb/204Pb = 19.55-19.93, 207Pb/204Pb = 15.60-15.63, 208Pb/204Pb = 39.31-39.69). Our data point toward the presence of both a peridotitic and a pyroxenitic component in the magma source. Using the model (Sobolev et al., 2007, Science Vol 316) in which the reaction of Si-rich melts originated during partial melting of eclogite (a high pressure product of subducted oceanic crust) with ambient peridotitic mantle forms olivine-free reaction pyroxenite, we obtain an end member composition for peridotite with 87Sr/86Sr = 0.70337, 143Nd/144Nd = 0.51291, 206Pb/204Pb = 19.36, 207Pb/204Pb = 15.61 and 208Pb/204Pb = 39.07 (EM-type end member), and pyroxenite with 87Sr/86Sr = 0.70309, 143Nd/144Nd = 0.51289, 206Pb/204Pb = 20.03, 207Pb/204Pb = 15.62 and 208Pb/204Pb = 39.84 (HIMU-type end member). Mixing of melts from these end members in proportions ranging from 70% peridotite and 30% pyroxenite to 28% peridotite and 72% pyroxenite derived melt fractions can generate the compositions of the most primitive Gran Canaria shield stage lavas. Combining our results with those from the low-silica rocks from the western Canary Islands (Gurenko et al., 2009, doi:10.1016/j.epsl.2008.11.013), at least four distinct components are required. We propose that they are (1) HIMU-type pyroxenitic component (representing recycled ocean crust of intermediate age) from the plume center, (2) HIMU-type peridotitic component (ancient recycled ocean crust stirred into the ambient mantle) from the plume margin, (3) depleted, MORB-type pyroxenitic component (young recycled oceanic crust) in the upper mantle entrained by the plume, and (4) EM-type peridotitic component from the asthenosphere or lithosphere above the plume center.
Project(s):
Coverage:
Latitude: 28.650200 * Longitude: -15.144500
Date/Time Start: 1994-08-24T07:25:00 * Date/Time End: 1994-09-04T09:40:00
Event(s):
157-953C * Latitude: 28.650200 * Longitude: -15.144500 * Date/Time Start: 1994-08-24T07:25:00 * Date/Time End: 1994-09-04T09:40:00 * Elevation: -3589.0 m * Penetration: 1158.7 m * Recovery: 556.24 m * Location: Canarias Sea * Campaign: Leg157 * Basis: Joides Resolution * Method/Device: Drilling/drill rig (DRILL) * Comment: 102 cores; 971.7 m cored; 0 m drilled; 57.2 % recovery
Size:
2 datasets

Download Data

Download ZIP file containing all datasets as tab-delimited text — use the following character encoding: